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A NEW DERIVATION OF THE EQUATIONS OF
ALREADY-UNIFIED FIELD THEORY

by

Menahem Schiffer
and
Ronald Adler

The algebraic Rainich conditions and the differential relations
of Wheeler and Misner which form the basis of the already unified_field
theory are usually obtained from the Einstein-Maxwell system of equations
by rather laborious tensor analysis. We here obtain these results by

utilizing classical matrix theory and a special local coordinate system.

0. Introduction
The combined equations of classical vacuum electrodynamics and

general relativity,

- 1 B .
a) R, =£"f +18 v q:B 2P~ p

(0.1) b) MY =0

are usually referred to as the Einstein-Maxwell equations. These were
investigated by Rainich in 1925 [1] and Wheeler and Misner in 1957 [2,3],
who found that the system (1) is equivalent to the following set of

purely geometric relations:
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a) RB* =0
"
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Subsequently, Whecler, Misner and others used the system (2) as the
basis of a geometrical-topological theory of gravitation and electro-
magnetism, i.e. the already-unified field theory [2,3]. It is our
purpose to give an alternative derivation of (2) from (1) which is
based on classical matrix theory and is considerably simpler than the

original derivation.

1. Same properties of antisymmetric matrices

T

Let us consider a 4 X 4 antisymmetric matrix £ = - £, with

complex components. We will identify this matrix with the Minkowski

electromagnetic field tensor in part 3. The characteristic polynomial

p(r) = |A\I - £| of f 4is easily shown to be an even function of A:

(1.1) B(A) = [AI - £| = |AT + £7] = AL + £] = (-1)h | =21 - £| = B(-\)

Thus @(A) = #(-A), and it follows that § has the form

(1.2) p(r) = xh + 8, 2+ 8,
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Furthermore, it is evident from (1.1) that if )\ 1is an eigenvalue of £
then -\ 1is also. The eigenvaelues, therefore, occur in two pairs:
A

“Ays Mgy <A It is easy to express the coefficients a., and a

1’ 1Y %o’ 2° 2 0
in (1.2) in terms of these eigenvalues; since the eigenvalues are roots

of #(\), we can write

(1.3) @B(r\) = (x-xl)(x+xl)(x-x2)(x+x2) = (x +x ) 22 +xlx2

Thus the coefficients 8, and &, are easlly identified as

(1.4) 8,

2 2 2,2
= +x) 5 mg =
The Cayley-Sylvester theorem tells us that f 1itself satisfies

f(f) = 0, so we have fram (1.2) and (1.4)

N L 2
(1.5) £+, £ + 8, =t - (3] + x ) £ + xl 2 =0

The preceding results allow us to construct an interesting
symmetric matrix from f. Define
8,

2 1,.2 2
> I-= f2 > (xl + xa) 1

(1.6) | P N
This will be identified in part 3 with the energy-momentum tensor of
the electromagnetic field. From the definition (1.6) and equation (1.5)

it follows immediately that T2 is a multiple of the identity matrix:

N



1,.,2 _,2\°
(1.7) - £ 02 -2
2 2 12
We will always assume that ll # Xe, so that is not zero.
A second interesting property of T follows from a consideration
of its Jorden canonical form for similarity. By Jordan's theorem any

complex matrix is similar to a direct sum matrix as follows:

(1.8) T=Q-17Q=Q-l \ Q

where the C, have scalars T, on the diagonal and "1"s on the

first superdiagonal:

// Ti 1 0 0.« 0
. 0

(109) c. = ( 0 Ti 1 0 LR

However, for the present case the C1 are severely limited by the

requirement (1.7). Indeed, if one squares the equation (1.8) and

compares with (1.7) it is evident that the C, must all be 1 X 1

i
matrices and that the T, must have the values + %-(hi - Xg).
Thus
L

\l.—upql"‘-:-l

ot guml e yreeend  gmmmel oot —

[SppoR——— ———

) m—



R

(1.10) T=Q T Q

and the T, are clearly the eigenvalues of T.

The signs of the T, can be determined from the definition

(1.6) and the fact that they are the eigenvalues of T:

' ' 1,2, .2 .
(111) e 1-1l = (5, - 208+ 221 - A -0
1,2, .2 2 '
Thus Ty - 5-(x1 + xe) is an eigenvalue of and must consequently
be xi or xg, each occurring twice. This gives
1l ,.2 2, _
(1.12) =Ty =T T3 =T = 3 (xl xa) =T

and upon substitution into (1.10)

-1 4 /T o 1 o0
(1.13)  T=Q 7lqa=4q ( )Q; 1=<
0 =11 0 1

~

Thus it is evident that T has & null trace and can be written as

(1.14) P = - %(Tr )1



In part 4 we will need the fact that the @ which appears in
(1.13) may be chosen to be orthogonal: Q-l = QT. The proof of this is

straightforward. Since T 1is symmetric, (1.13) gives

(1.15) T @@ =%
from which
(1.16) 77(aQ%) = (@D 7/

Ir QQT is now written in terms of 2 X 2 submatrices as

T « 7

then substitution into (1.16) reveals that 7 =& = 0. Thus

. ' T a 0

and the submatrices @ and £ are clearly symmetric and have nonzero

determinants.

Next note that the choice of Q 1s somewhat arbitrary since

it may be replaced by

- R O
(1.19) g = (o S)Q
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vhere R and S are arbitrary 2 X 2 nonsingular matrices. This is

evident from the fact that

-1 ~e] ~
(1.20) T=Q Q=373
Furthermore, it is evident that

(1.21) 337 - T

Thus in order to complete the proof we need only show that R and S

T

may be chosen so that Ra R = SP ST = I, for then by (1.20) and (1.21)

ﬁ will be the desired orthogonal matrix. This is an easy task; let

(1.22) o= (: 2\;; R=(u v)

\ /

and substitute into Rx RT = I. This gives three equations in the four

unknowns u, v, w, and z.

au2 + 2buv + cv2 1

]

(1.23) aw® + 2bwz + czo = 1

auw + buz + bwv + czv = 0

If a 1s nonzero, a solution is

1 a -b
(1.21‘,) v=20: u = = . 7 = — . W =
’ /o’ N el falal




The case of nonzero ¢ 1is completely analogous. If both a and e,

however, are zero we can use the following solution:

s =1 . = L. = -1 = L
(1.247) z=1; u= 35; V 1; wv= 5

This exhausts all cases, so we have shown that R does exist. In
completely similar fashion there exists a nonsingular S such that
sB ST = I, so0 the proof of the statement is complete: the @ in
(1.13) can be chosen to be orthogonal .

The canonical form (1.15) for T can be utilized to investi-

gate the structure of its generating matrix f. Write £ in the form

T K L
(1.25) £=Q |, 5@

where Q 1is the same orthogonal matrix as in (1.13) and K, L, M,
and N are to be determined. Since f 1is antisymmetric, both K and
N sare also antisymmetric. From the definition of T (1.6) and the

canonical form (1.13), one finds easily that

2
10
(1.26) 12=QT(1 . )Q

QO XQI
Using (1.25) for f and (1.26) for f2 and the obvious identity
faf - ff2 = 0, we obtain
2

(1.27) (O] = Ag)L = (&

,2
o xl)M =0

8
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Since ki

Similarly, the identity ff = f2 yields

and xg are assumed to be unequal, L and M are zero.

(1.28) € =221

/ 0 1
(1.29) K=1hJ ; N=1,J ; J=1_

The signs in (1.29) are arbitrary and have been chosen to be positive.

This gives the following canonical form for f
i g 0
T 1

where Q 1is an orthogonal matrix.

2. A simplification of preceding results

Having obtained the canonical form of f in (1.30) we can

put all the preceding results in very simple form. Define

T iy o T 0 o

where Q 1s the same orthogonal matrix as in (1.30). Then one finds

by an elementary calculation that



2 3
p2 +q =1, p5 =p; a =4q

(2.2)

The canonical form (1.30) now is expressible as
(2.3) £ = 0P+ Ma

From the definition of T and (2.2), we have

2 2

(2.4) 1= 205 -0 - o)

nj=

4 4
qpcpq-O; P +q =1 ete.

It immediately follows that T 1is tracelese and that T2 is a

multiple of the identity

(2.5) P28 e - B P

These are the principal results of part 1, but now made quite

parent.

The degree of uniqueness in the relation of f to

quite interesting and easily ascertained. If we construct a

from a different T defined by

(2.6) f = xlp + M4 M o= kl M, cosh Q@
~ 2 2
Xa = Xl 12 sinh O
10

trans-

T 1is

E matrix
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vhere @ 1is an arbitrary parameter, then
L a2 _ 22y, 2 _ 2y _ L2 _,2y,.2 _ 2.
(2.7)  F= SR -X)E -a) = FO;-M)p -q) =T

that is, f and Es generate the same T independent of the cholce

of Q. Note in particular that the choice

(2.8) cosh @ = ——2——; &inh a =

clearly ylelds the original f, 1i.e. F=r. It is, therefore, clear
that an entire one-parameter family of f matrices generates the same

T matrix.

3. The algebraic Rainich conditions

We now wish to apply the results of parts 1 and 2 to the
task of deriving the Rainich conditions (0.2a, b, ¢). For convenience
we will work in a locally geodesic system, so that at some fixed world-
point P the Christoffel symbols vanish and the ordinary and co-
variant derivatives of first order coincide. Such a locally geodesic
system is only determined up to a linear transformation with constant
coefficients. Thus, in order to use matrix theory, we may use a
geodesic system in which the metric tensor 8uv is the Kronecker Suv'
This allows us to ignore the distinction between contravariant and
covariant indices and makes tensor algebra and matrix algebra the

same. Two further features of this special system should be noted;

11



firstly, it is only unique up to an orthogonal transformation, which
leaves ng inveriant. Secondly, in such & system both the coordinates
x" and the Minkowski tensor f;v will in general be complex.

With the above choice of a coordinate system, we can write the
energy-momentum tensor of the electromegnetic field (0.la) in matrix

notation as
(3.1) T-F - ()

Comparison with (1.16) shows that T depends on f 1in precisely the
same way as the T matrix whieh we investigated in part 1 depended on
the antisymmetric matrix f. Thus all the results concerning T 1in
part 1 are immediately applicable to the electromagnetic energy-
momentum tensor. In perticular, we can assert that T 1is traceless
and T2 is a multiple of I. By equation (0.la) we can say the same
about Ruv' That is, in tensor notation,

1

oo . \ ({=]
(3.2) 8) B =0; b) R Bo= $(RgR ) g,

Furthermore, since (3.2) is written in covariant form it 1s true at all

world-points and in all coordinate systems.

It 1s possible to strengthen equation (3.2b) by demonstrating
that, under reasonable physical assumptions (as explained below), the
R*P

scalar RTB is positive and real. This is easily shown as follows.

From (2.5) we know that R RTB may be expressed in terms of the

8
eigenvalues of faB as (Xi - Xg)a. This is a covariant statement.

12
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Indeed, the eigenvalue equation of faB may be written covariantly as

P B
(3'5) faﬁ ¢ = xga = XsaB ¢

from which it is clear that the eigenvalue A 1s & scalar. Equation

(3.3) gives rise in the usual way to a covariant secular equation for A\:

(3.4) |tys = Meggl =0

What we wish to show now is that if we make the physically reasonable

demand that faB be real in a system of real coordinates then
2 _,2\°
(kl - Xz)

A scalar can be calculated in any coordinate system so we will

is a positive real scalar.

momentarily utilize a real tangent Lorentz system with

1
(3.5) Bap = * -1
-1

We can vrite faﬁ’ which is now assumed real, in the general form

O a b ¢
(3.6) faB - -a 0 a4 e
b -d 0 f
¢ - -f O

13



and for convenience we introduce the real three-tuple vectors

C=(a, b, ¢c) and D =(f, -e, d). The secular equation (3.4) with

8as from (3.5) and faB from (3.6) 1is found by direct expansion to be
(3.7) W (R - - (eD)? -0

where we have used three-dimensional vector notation. This equation

has the two solutions

@ -+ AP - F)°+ b(c.D)?
(3.8) \2 . (€ D)

from which we find immediately that

(3.9) R R = (F - ) < (@ - B + uen)?

By our standing assumption that Xi # xg this is obviously a positive
real number. Since it is also a scalar, we have shown that it is real
and positive in general.

The above fact is interesting as a statement concerning (3.2b),
but it is also important in the derivation of condition (2.b) as we
shall see presently.

It is a well-known fact that in special relativity the component
Too of the energy-momentum tensor is proportional to the energy density
of the electromagnetic field and must, therefore, be a positive number.

In order to preserve the same interpretation of Too in general rela-

tivity we must show that

1k
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(3.10) R_>0

is a consistent covariant demand, at least in all real coordinate
systems.
g

To demonstrate the consistency of this relation consider Ra

a8 & linear transformation on an arbitrary vector vB

B
(3.11) Wy = By Vg
Fram (3.2b) it is evident that
a 1 8 n
(3.12) vy ¥o= § (Rtﬁ R ") vy v

Since RTB RTB has been shown to be positive, we see that Vo and Vo

are both timelike, both spacelike, or both null. In particular, we
can say that RaB carries the light cone into itself.

Next we consider Roo in a new coordinate system

(3.13) R o= = =

K v ~
Let ox_ be v anda - R be w as above, so that R can
a;o a;o uv V) 00
be written
(3.14) R_=vw

15



Thus it is clear that the demand that ﬁoo be positive definite is

equivalent to the covariant requirement that RaB carry a vector v

into & vector w~ such that voad > 0. This can be interpreted

B

«Q

physically by saying that Ra carries the forward light cone into
itself and the backward light cone into itself. Thus, by the statement
(3.10), one gives a sign sense to R;v in a covariant way for any real
coordinate system.

The conditions (3.2) and (3.10) were first obtained by Rainich
in 1925, using somewhat different matrix methods than we have used.

They are usually referred to as the algebraic Rainich conditions ang,

indeed, are algebraic in the sense that they follow from a consideration
of fuv and Tuv at a single world-point P.

This completes the derivation of (0.2a, b, c) from (0.1), so
only the differential relation (0.2d) remains to be considered. This
differential relation will be our most important and interesting result.
We have derived the algebraic conditions (0.2a, b, ¢) mainly for the

sake of completeness and in order to lay a groundwork for the final

relation (0.24).

4. The differential relations of Wheeler and Misner

In order to obtain (1.24) we need to take into account the fact
that fuv obeys the Maxwell equations (O.lb,c). At the world-point
P 1in our special system we can ignore the distinction between contra-
variant and covariant indices and between ordinary and covariant

derivatives of first order. This allows us to rewrite (0.lb,c) as

16
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(4.1) a) ¢ =0; b) «f =0
uv v uvlv

vhere we have retained the Einstein summation convention without regard
for index position. ‘

Our aim now is to study how equations (4.1) reflect themselves in
properties of the tensor Ruv' Observe first that, given an energy mo-
memtum tensor Tuv according to (2.6), one can only obtain qu up to
a parameter (¢ which may depend on the point considered. Algebraically,
the « field at different world-points could be completely incoherent,
but we will find that the Maxwell equations (4.1) provide a differential
system for  which makes it a determined point function. The inte-
grability condition on the system will be the Wheeler-Misner relation
vhich we seek.

2 2
Let r = MoTA, and write fuv in the general form (2.6).

(4.2) fuv =T cosh & Py + r sinh &,y
By inspection of (2.1) the dual of f 1is found to be

. = +
(4.3) *fuv r cosh 8yt T sinh a Py
Recall that our special coordinate system is still arbitrary to
an orthogonal transformation. This allows us to assume without loss of
generality that the matrix Q which appears in the definition of p
and q 1s precisely the identity matrix I. Then p and q at the

world-point P take the particularly simple forms

17



. 13 0 . o o
(-4) P=\o o)’ - (o 1J>

It follows then from (2.4) that the energy-momentum tensor becomes

I O
(4.5) L P (o _I)

~

and that the Maxwell equations at P are

a) f =p . (rcosha) +q. (sinha)
uvly WY |v v v
+ rcoshap + r sinh a q =0
uv|v uviv
(4.6)
b) «f = (rcosha) +p .  (r sinh a)
wly v oW y
+ (r cosh a) q + (rsinha)p =0
uv|v uv v

To simplify (4.6) define at the world-point P vectors T]'u

and Ku and scalars A and B as follows:

(4.7) Tr“=p ; K =q ; A=rcosha; Ba=rsinha
uviv uvlv

Then Maxwell's equations (4.6) reduce to

a) P A +q_ B +AT]'u+BKu=0
(4.8) lv lv
b) A +p B +AK +BJ[] =0
q'LW |V |v ) K

’-"4 p‘ ¥ e —— s r———x'
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Now multiply a) by P, b) by q, add the two results, and use (2.2)

to obtaln easily

(b.9) AR, TT, + 3, K, + (log r)|u] + B(q,, TT+ B, X, * am] =0

Similarly, multiply a) by q, b) by D, and add to get

~ ~ ~ ~ + = o
(4.20) Alg, TI, +3,, Kk, +a u] +Blp,, I, +q,, K, + (log r)w]
By the definition of A and B and the structure of these equations,
it is clear that (4.9) and (4.10) are consistent only if the coeffi-

cients of A and B are zero. Thus we obtain

2) @ (T, T, + 3, &)
(4.12)
b)  (log r)hl =- (3, T, +4,, k)

As we indicated above the « field is now seen to be subjected to a
simple differential system.

The next step in our development is to calculate the vectors

T

Ve
ative and interesting form. 1In order to do this we first will calculate

and Ku and to use the result to put (4.11) into a more inform-

the derivatives of the matrices p and q. At the world-point P
these matrices are precisely the p and q in (L4.4), but as we move
to a nearby world-point P(e;u), displaced from P by a distance e

in the u-th coordinate direction, these matrices will become p(“)

19



and q(u) which differ from 5 and E by a small rotation in space-
time corresponding to an orthogonal matrix Q(u). Let us represent

this matrix Q(p) by a series

2

(4.12) Q(u) =1+ € C(u) + ¢ D( 4+ e

M)
x

The orthogonality of Q(u) then implies that C(u) must be anti-

symmetric, as is well known, and that its inverse is

T -1
(-13) Y) =Yy =T - €Cy *

It is now easy to calculate the derivatives of p and q at

P in the u~th direction. We have from (2.1), (4.12), and (4.13)

(aw) ) =y By =B elBog,) - oy B+ o)

Now subtract ; fram both sides, divide by €, and pass to the limit

€ -0 to obtain

(h:15) P TPl T G P
and similarly for q' . If we write C(u) in terms of 2 X 2 sub-
vy
matrices as
(W) P(w)
(u) (w)

20
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then the antisymmetry of C(u) implies that a?u) = - a(u),
T T
d(u) = d(“), and b(u) =" e Now substitute (4.16) and (4.4)

into (4.15) to obtain an explicit form for p

[u
/0 I
H ! °
Similarly, we find for q
m
O byl
(4.18) q =1
lu Je 0
(1)

We will later need the derivative T at P, so we will
")
obtain it now while it is most convenient. Recall that T may be

written as

(4.19) T = %ra(pa - )

Using (4.4), (4.5), (4.17), and (4.18) it is then easily seen that

(4.20) T =(logr) 2T+r

. " “C(w)

Observe that in the above expressions for p| y @ , and T
B B

21
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only the 2 X 2 matrices b and ¢ = - bT occur. Let us
(w) (u) (u)

write these explicitly as

(TR TRt
(b21) by = b e

m n 2 n
W 7} ") 78

and substitute into (4.17), (4.18), and (4.20) to get

1
0 0O ' m n
] H n
O 0 t "ku -‘u
a) p =1 - - - - f _____
hl -m ku ] 0 0
" '
- ''o 0
nl-l ‘H '
/ '
0 O (] ‘ "k
. K 1
0 0 [} !1u -mu
(uoaa) b) ql = 1 ----- : -----
71
-4 “n , O 0
[ 78 .
k m 'O 0
L Mo
4 [
0 o k 2
/ Lo b
0 0 ' mu nll
¢) T = (log I‘) 2 % + r2 ..... Ve e e e - o
\
. " k m , O 0
1 7} .
n ' 0
\‘lu o )
22
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o e DA

A straightforward calculation then yields

(4.23)

We have achieved an explicit form for Ku and TT“ in terms of
the components of C(u). Let us substitute now the results (4.23) into

(4.11a) and use (4.4) to get an explicit form for al
u

n3 e mu

(b2 kl& - 15
-2 (04 =

7} 12 1

Observe an important fact at this point: the vector «

u
is composed of the same components k“, l“, mp, and n“ vwhich

oceur in 'I" and is, therefore, expressible in terms of TW alone.
V)
Indeed, our only remaining problem is to express the correspondcnce of

a and T in covariant form. To do this consider the covariant
m m
vector

23



T TBu"V
gl €
(4.25) v, = AvBy

Y K
T ™

7
Lo

vhich we will now calculate at P in our special coordinate system.

By (4.5) the denominator is simply ok, The numerator takes the simple

form
(4 26) Bullv_, .

. Jll = T

8l ey T Tu TGy T uy
Bulv
Using the explicit form (L4.20) for T we have
Bulv

(4.27) T  =2(log r) T

€ T € % T
AVBY Bulv uy lv AVBY Bu Tny

0 .

‘ b(u) 5

AvBy . =-c 0 794
\ (U-)

Jve

The Rainich condition (3.2b) and the Einsteinequations (0.la) tell us

~

2
+r e

that ﬁag T is a multiple of the metric tensor and is, therefore,

wy

symmetric in B and 7; since is totally antisymmetric the

a8y
first term of (4.28) vanishes identically. A short calculation using

(4.21) and (4.5) then reveals that

0 0 v =k =2
\ v v
0 0 : -mv -nv
(4.28) T %wa-;-r‘* i
Bulv k, ®, : 0 0
\\ £, =®, ' 0 ° /e
24
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and a slightly tedious but elementary calculation glves

3 //n3 - mhx\
7

€ T -
MOY muly W BT \

(h.29) VX = % .
Tpk ot 12 - n
m -k
Comparing this with (4.24) we see that
Bullv
4|g|erper T?p
(4.30) @ =v = *
Ia T x 7

vhich is in tensor form and therefore valid in general. Using the

Einstein equations (0.la), we can also write this in geometric form as

Tl e, B4V g
(hn}l) a = VX = )\Mﬁl k 4
I R ) of

The differential relations of Wheeler and Misner follow
immediately from (4.31), for in order that (4.31) be an integrable

relation we must have

(b.32) v -V =0
A T|a

Thus we have finally obtained (0.2d), the last basic relation of the

already-unified field theory.

a5



(1]
(2]
(3]

G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925)

C. W. Misner, J. A. Wheeler, Ann. Physics 2, 525 (1957)
J. A. Wheeler, Ann. Physics 216, 604 (1957)
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